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ABSTRACT 
This paper considers the problem of tracking and intercepting a potentially moving ground-based RF source with an 
autonomous guided munition that has a passive bearings-only sensor located on its nose. It is assumed that the munition 
has lost GPS signal lock and that it relies only on its noisy inertial measurement unit (IMU) for guidance and 
navigation. Bearings-only target motion analysis (TMA) algorithms are used to obtain a position and velocity estimate 
for the RF source using the position, velocity and attitude estimates of the munition as well as the azimuth and elevation 
measurements obtained from the bearings-only RF sensor. Six degree-of-freedom (6-DOF) and three degree-of-freedom 
(3-DOF) munition models are used to evaluate the tracking and intercept/seeker performance of a hybrid coordinate 
(HC) extended Kalman filter (EKF), a particle filter (PF), a multiple hypothesis (MH) HC-EKF, and a pseudo-linear 
least squares (PLLS) filter. 

Keywords:  bearings-only, target motion analysis, guided munitions, RF seeker, location estimation, tracking, Kalman 
filter, pseudo-linear least squares filter, passive RF sensor 

1.  INTRODUCTION 
Civilian and military navigation systems are increasingly relying on the accuracy of the information provided by the 
Global Positioning System (GPS). Moreover, since GPS receivers are now embedded in many different types of 
systems, this dependence goes far beyond inertial navigation and guidance systems and extends into areas such as 
personal communication systems (PCS) and wireless internet access systems. In military systems, the loss of GPS signal 
lock could cause an otherwise successful mission to become a failure, thus wasting valuable resources. In some cases, it 
could even mean the difference between life and death. The same is true in civilian applications. Therefore, it becomes 
imperative not only to protect the integrity of the GPS signal, but to locate and to eliminate any threats to GPS as soon 
as possible. 

Although GPS has some built-in anti-jam (AJ) capabilities, it can be further augmented by integrating a GPS receiver 
with an Inertial Navigation System (INS) and by utilizing AJ GPS antennas. The performance of GPS/INS systems is 
especially crucial for guided missiles with extended ranges. Depending on the variant, the standoff range of unpowered 
guided missile systems can be as much as 100 kilometers. When a guided missile is tasked to fly deep behind enemy 
lines one should expect jammers to be placed anywhere along its trajectory, thereby increasing the probability of losing 
GPS signal lock sometime during the mission. If the flight time of an unpowered weapon is more than 100 seconds it is 
in danger of not achieving its accuracy requirements due to the potential loss of GPS signal lock somewhere along its 
trajectory. This is because once GPS signal lock has been lost, navigation errors grow at a rate which depends on the 
quality of the INS. A one degree-per-hour INS will have about a 30 meter circular error probable (CEP), that is, the 
radius which encloses 50% of all samples, within 100 seconds [1, 2]. This situation creates a dilemma for mission 
planners. That is, what is the weapon to do if it has lost GPS lock and is still too far away from its target to meet its 
accuracy requirements? One solution is to equip the munition with an angle-of-arrival (AOA) sensor that can provide 
the mission planner with a number of new opportunities in the event that GPS signal lock is lost. First, if so desired, it 
provides the missile with a jammer homing system. This is especially useful if the missile determines that the jammer 
and the designated target are collocated. In which case, it will permit the weapon to successfully complete its mission 
with potentially improved accuracy. Second, by sharing this information with other cooperative missiles and/or a central 
command, it will improve the success probability of future follow-on missions. Finally, the angle-of-arrival and power 
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Figure 1: Scenario 

geometry 

 
 

Figure 2: Coordinate system 

 
Figure 3: INS error model 

level information obtained from multiple missiles within a common area-of-interest 
can be fused together to improve our battlefield and situational awareness. With this 
added knowledge it will be possible to compute trajectories which could take 
advantage of regions of lower jamming power levels to reach designated targets. 
Power levels recorded by prior missions can also be used to determine the locations 
of large jamming sources, thus providing the location of new potential targets.  

We are primarily interested in evaluating the performance of bearings-only target 
motion analysis (TMA) algorithms that use munition-based AOA sensor 
measurements as a means of tracking and homing on GPS jammers. The bearings-
only tracking problem is also known as a passive tracking problem due to the fact 
that active radar is not utilized to obtain measurements of the target’s motion. 
Typically, the measurements are the bearing angles in the direction of the target 
emissions in the form of elevation (θ) and azimuth (φ) angles. The emissions may be 
any form of RF emissions such as communication signals and radar or, perhaps, 
sonar signals emanating from the target.  

Bearings-only TMA is a difficult problem to address because it has inherent 
observability issues [3, 4, 5] and the system equations have nonlinear components 
making it difficult to construct stable and unbiased estimators. In the 
standard extended Kalman filter (EKF) approach to this nonlinear 
problem the target state is defined in Cartesian coordinates so that 
the propagation of the state (i.e. the dynamic equation) is linear, 
while the nonlinear measurement equation is linearized through a 
Taylor series expansion. The Cartesian coordinate EKF (CC-EKF) 
is known to have divergence issues for the bearings-only problem, 
particularly when the target initialization is poor [3]. A particular 
variation of the CC-EKF is the Modified-Gain EKF (MG-EKF) of 
Song and Speyer [6] which, in our implementation, had similar 
divergence issues. Another algorithm, dubbed the pseudo-linear 
least-squares (PLLS), is obtained through some manipulation of the 
measurement equation and has very good convergence properties 
for stationary targets (Aidala, Nardone) [7]. However, the PLLS 
does lead to a biased estimator [8]. In this algorithm the set of 
pseudo-linear measurements are linear in the Cartesian state. The 
PLLS measurement matrix is a function of the range to the target 
and includes noise which ultimately leads to a bias in the state estimates.  

Another variation of the EKF is the Modified Polar Coordinate EKF (MP-EKF) where the state dynamics are nonlinear 
and the measurement equation is linear [9]. The primary drawback to the MP-EKF approach is the complexity of the 
nonlinear state equation which requires an approximation for the state estimate. In contrast, the hybrid coordinate EKF 
(HC-EKF) is based on the observation that the state dynamics are linear in Cartesian coordinates while the measurement 
equation is linear in modified-polar coordinates [10, 11]. The approach is 
then to implement the Kalman filter equations in the coordinate system 
for which the process is linear. Thus, for propagation of the state 
estimate and error covariance matrix, the Kalman filter equations are 
implemented in Cartesian coordinates, and for state and covariance 
updating, the Kalman filter equations are implemented in modified-polar 
coordinates. The transformation of the state estimate from one 
coordinate system to the other is an exact mathematical process; whereas 
transforming the covariance requires an approximation. We found that 
the HC-EKF preserves the stability of the MP-EKF formulation while 
retaining the simplicity of the CC-EKF. Recent research has attempted to 
improve the performance of the CC-EKF by considering multiple initial 
conditions using parallel Kalman filters and weighting the outcome of 



Figure 4: Angle error model 

 
Figure 5: Simulation block diagram 

each filter to come up with a single estimate [12, 13]. We implemented 
the multiple-hypothesis approach with the HC-EKF but did not see any 
improvement in performance. This was mostly likely due to the fact 
that the HC-EKF is inherently stable and has good convergence 
properties. Another family of filtering algorithms which has gained 
much interest in the last decade is the group of algorithms referred to as 
particle filters [14]. Particle filters are based on Monte Carlo simulation 
methods. One advantage of particle filters is that there is no assumption 
of linearity or Gaussian noise processes. The probability density 
function (PDF) of the jammer is approximated with points (the 
particles) in the state space. As the number of points representing the 
PDF increases, the computational expense associated with the 
algorithm increases as well.  

In this paper we consider a simple guided munition scenario with an 
AOA sensor on the nose of the munition. The scenario is described in 
the following section. We also limit ourselves to the discussion of the relative performance of the PLLS algorithm, the 
HC-EKF, the multiple-hypothesis HC-EKF (MH-HC-EKF), and the particle filter (PF) implementation. These 
algorithms are briefly described in Section 3. We provide some typical simulation results in Section 4 and concluding 
remarks in Section 5. 

2. SCENARIO DESCRIPTION AND 
ASSUMPTIONS 

A bird’s eye view of the guided munition scenario is 
shown in Figure 1. A flat earth model is used with an 
east-north-up (ENU) inertial coordinate system. The 
sensor/munition coordinate system is defined in 
Figure 2 with its x-axis going forward through the 
nose of the munition. The inertial position of the 
guided munition is denoted by 3)( RtM ∈x . The 
intended target is at the origin and the jammer inertial 
position is denoted by 3)( RtJ ∈x . It is assumed that 
the jammer is traveling with a constant velocity Jt vx =)(& . Our simulation uses two different models for the missile 
dynamics. Both models attempt to capture the missile dynamics of an extended range munition and the navigation errors 
of both models are the same. The INS error model is shown in Figure 3. The first missile model is a 3-DOF dynamic 
model that computes the axial and normal aerodynamic forces acting on the body of the munition through a set of look-
up tables that are a function of the Mach number and the angle of attack of the weapon. A piecewise exponential 
atmospheric density model is employed. Attitude error is modeled by adding rotational errors that are consistent with 
the INS error model of Figure 3. The second model is a full-blown 6-DOF dynamic model obtained from the Air Force 
using the VisSim™ environment by Visual Solutions Corporation.  

The munition is released at time t = TL < 0 and loses GPS signal lock at time t = 0. We are primarily interested in the 
period of time after GPS signal lock has been lost. Once GPS signal lock has been lost the weapon can do one of two 
things: it can continue to fly towards its intended target or it can home on the jammer. At t = 0 the munition begins to 
utilize the AOA sensor located on the nose of the weapon. The sensor measures the elevation angle (θ) and azimuth 
angle (φ) of the jammer relative to the munition in the sensor/munition coordinate system. Bearing measurements are 
taken every 10ms and these samples are averaged every 100ms. The elevation angle dependent Gaussian sensor noise 
model used in our simulations is represented in Figure 4 by the composite angle error 2222 )(sin φθ σθσσ +=c  where 

0}{}{ == φθ nEnE and 2222 }{}{ φθφθ σσ === nEnE . The equation relating these angle measurements is given by 
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where 3)(~ Rk ∈r is the unit bearing vector in the direction of the jammer defined in the sensor/munition coordinate 
system. 

The bearing measurements are used to compute an estimate of the jammer location using bearings-only localization 
algorithms. Selected algorithms are described in Section 3. The estimated jammer location and our confidence in the 
estimate are used to determine whether or not the munition will home on the jammer or continue toward its intended 
target. The decision algorithm itself is outside the scope of this paper and is not discussed. Figure 5 shows the block 
diagram of the simulation components. 

3. ALGORITHM DESCRIPTIONS 
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jammer, and 0a  represents the acceleration of the weapon (i.e. sensor platform) which is assumed to be measured by 
the INS. We can put the above equation in matrix-vector form as 
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where 3I  is the three by three identity matrix and 33x0  is the three by three zero matrix. Since the propagation is done 
in discrete time steps, the above equation can be discretized by integrating over one time step (T). Furthermore, we have 
assumed that the jammer is not accelerating, so that 0a ≈J . The resulting discrete-time equation modeling the system 
dynamics is given by 
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Our goal is to estimate the position of the jammer through an estimate of the range: Rxx ˆˆˆ += MJ . An estimate of the 
missile position, Mx̂ , is available from the INS.  

The measurement equation (CCME) can be rewritten as 
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where 33)( xRk ∈Λ is a rotation matrix which transforms the unit bearing vector in the inertial coordinate system 
3)( Rk ∈r  to the unit bearing vector in the antenna coordinate system )(~ kr . Since )(•f  is a nonlinear function, and 

)()()( kkk RRr = , the measurement equation (CCME) is a nonlinear function of the state Cx . Hence, it is difficult to 
obtain an estimate of the state without some form of approximation. In fact, it has been demonstrated that the extended 
Kalman filter in Cartesian coordinates, which uses a Taylor approximation of (CCME), can lead to instabilities in the 
estimation process [3]. Selected alternative bearings-only estimation algorithms are described in the following sections. 



3.1 Pseudo-Linear Least Squares (PLLS) Algorithm 

In its simplest incarnation, the PLLS algorithm assumes that the jammer is stationary, that is 0=Jx& . Since the jammer 
is assumed to be stationary, there are no dynamics to update and the observations are assumed to be pseudo-linear. 
While this filter is very simple to implement and remains stable, it is a biased estimator [8]. The filter is derived by 
defining bearing measurements in inertial coordinates. ( ) ( ))()(arctan)()(arctan)(/ kkkkk ZXZXzx rrRR ==β  
with )(/ kxyβ  and )(/ kyzβ  defined in a similar manner and where 
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Assuming an additive Gaussian noise,  
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we can write the measurement equation as a linear function of the inertial state of the jammer and the munition: 
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We note that M
T

P kk xHz )()( = is a measured quantity since it is a function of the (noisy) bearing angles in inertial 
coordinates. The term )(kPn  is the effective noise of the system. The measurement equation (PLME) can now be 
directly applied to the standard least-squares recursive form: 
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where 0)0(ˆ xx =J is the initial estimate of the jammer location and 0)0( >= IP λ  for any positive constant λ.  

In our simulations, the covariance P is reset every 5 seconds with λ = 0.02, and 0x is initialized after 4 seconds of 
filtered bearing measurements have been accumulated. The filtered bearing measurements are extrapolated to intersect 
ground level (defined as the target altitude) to determine the initial position estimate. The separation angle between the 
latest LOS vector to the jammer position estimate is continuously monitored. The filter is reinitialized if the separation 
angle exceeds five degrees. The new initial condition is selected along the latest measured LOS vector at a range equal 
to the last position estimate range. 

3.2 Hybrid Coordinate Extended Kalman Filter (HC-EKF) 

The HC-EKF is based on the observation that the measurement equation is linear in modified-polar coordinates while 
the state dynamics are linear in Cartesian coordinates. The approach is then to implement the Kalman filter equations in 



the coordinate system for which the process is linear. The jammer state in modified-polar coordinates 

( )( ) 81 / Rdtd
T

TT
MP ∈



= − RRRrrx & includes the unit line-of-sight (LOS) vector 3

1
RMP ∈≡ rx , the time-

derivative of the unit LOS vector 3
2

RMP ∈≡ rx & , the inverse of the range RMP ∈≡ −1
3

Rx , and the range rate divided 

by the range ( ) RdtdMP ∈≡ RRx /
4

. In the standard hybrid-coordinate EKF implementation, the measurement is a 
direction cosine vector in the direction of the jammer and, hence, the measurement equation in modified-polar 
coordinates is a linear function of the state [10, 11]:  

 [ ] )()(00)()()()()( 333333 kkkkkkk MPxxxMP nx0ΛnrΛz +=+= . (MPME) 

Thus, for propagation of the state estimate and error covariance matrix, the Kalman filter equations are implemented in 
Cartesian coordinates, and for state and covariance updating, the Kalman filter equations are implemented in modified-
polar coordinates. The transformation of the state estimate from one coordinate system to the other is an exact 
mathematical process whereas transforming the covariance requires a Jacobian and, hence, an approximation.  

In our implementation, we note that a unit vector in the direction of the measured LOS is equivalent to measuring the 
elevation and azimuth angles. If the measurement were the bearing vector and not the bearing angles, the resulting 
measurement equation would be linear in modified-polar coordinates. In fact, the measurement would be a noisy 
version of )(

1
kMPx . Thus, we transform the measurements from bearing angles to a bearing vector representing a unit 

LOS vector to the jammer: 
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where 53x0 is the 3 by 5 zero matrix. Note that the equation above is an approximation since the noisy measured 
elevation, )(kmθ , is given by )()()( knkkm θθθ +=  where )(kθ  is the true elevation angle. In order to use the Kalman 
filter update equation it is necessary to derive the approximate noise characteristics of )(kn , or the measurement error 
covariance matrix. Hence, we must expand the sinusoidal functions and find the mean and variance of the “noise” term 
for each component of the measurement vector. For example, we expand the cosine function for the first component of 

)(kHz  as follows 

 ))(sin())(sin())(cos())(cos()(1 knkknkkz θθ θθ −=  

where )(knθ is a zero-mean Gaussian random variable with a variance of 2
θσ . Assuming that the magnitude of the 

noise is small, we approximate the cosine of the noise as one which yields 
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where ( ) ( ))(sin)(sin)(1 knkkn θθ= . It can be shown that the mean and variance of )(1 kn are given by 
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In the same way, we can determine the noise statistics for )(2 kz  and )(3 kz : 
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The statistics on )(2 kn  and )(3 kn  are assumed Gaussian with 
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We stress that the actual measurements are the elevation and azimuth angles representing the direction from which the 
jammer energy emanates. These measurements are transformed so that the measurement equation can be expressed as a 
linear function of the modified-polar state variables. Note that the variance on the angle estimates is a function of the 
actual angles. For example, the variance on the elevation angle estimate increases as the elevation angle increases. Thus, 
throughout the flight of the weapon, the accuracy of the angle of arrival estimates varies, and we want our measurement 
noise covariance to reflect this difference. Thus, the measurements are weighted according to their accuracy. By 
accounting for the true time-varying nature of the measurement error covariance matrix, we build a more robust 
algorithm.  

The transformations between the Cartesian and modified-polar coordinate systems are derived in a straightforward 
manner; therefore, only the results will be given here (see [10 and 11] for more detail). The nonlinear vector function 
which transforms the state in modified-polar coordinates to the state in Cartesian coordinates is denoted 

68:)( RRMP
C
MP →xg  and is given by 
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Likewise, the nonlinear vector function which transforms the state in Cartesian coordinates to the state in modified-
polar coordinates is denoted 86:)( RRC

MP
C →xg  and is given by 
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The above equations exactly transform the state estimate from either coordinate system into the other system. What 
remains, then, is the transformation of the covariance matrices from one coordinate system to the other. It is this step 



which introduces modeling errors and is only approximate. The transformation of the covariance matrix in Cartesian 
coordinates, CP , to that in modified-polar coordinates, MPP  is given by TMP

CC
MP
CMP )(JPJP =  where MP

CJ  is the 
Jacobian matrix of the transformation from Cartesian to modified-polar coordinates and is given by 
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transformation from modified-polar to Cartesian coordinates is given by 
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3.3 Multiple Hypothesis Hybrid Coordinate Extended Kalman Filter (MH-HC-EKF) 

A common problem with applying the EKF to the bearings-only tracking problem is divergence of the filter. It is 
observed that this generally occurs with poor initialization. The range-parameterized algorithm simply runs several 
EKFs in parallel, each initialized differently [12, 13]. Typically, the jammer is known to lie in a certain region of the 
state space through prior information. The space in the direction of the LOS is chopped up into range bins and each 
filter is initialized using the mean of each range bin as the range to the target. Given the first bearing measurement, the 
initial estimate of the jammer position for each EKF is determined by this bearing and the mean value of the range bin 
for the corresponding EKF. Thus, multiple filters are estimating the position of the jammer, each initialized with a 
different value. Each filter’s estimate can be considered as a hypothesis. The “probability” that each filter’s estimate is 
the correct one is found using the value of the measurement likelihood. Note that this is somewhat ad-hoc in the sense 
that the hypotheses are not disjoint events. Another perspective on this approach is that we have several independent 
filters tracking the same object. The measurement likelihood is an indication of how well the filter’s predicted 
measurement matches the actual measurement. Thus, the measurement likelihood is a confidence value on the accuracy 
of each filter’s estimate. This confidence value is used to weight each filter estimate. The overall estimate is then the 
weighted sum of each filter estimate. The benefit over a single Kalman filter is that any of the filters which begin to 
diverge will exhibit this divergence in the measurement likelihood leading to low confidence values. Thus, these filters 
will contribute little to the overall estimate and, when subject to a pruning technique, will be discontinued.  

There is certainly intuitive appeal to this multiple EKF approach. We implemented this for the hybrid algorithm but 
found the results to be worse than for a single hybrid filter. The reasoning is that the hybrid filter rarely diverges (we 
found no cases for which it did) and, thus, all parallel filters continue to track and converge to the correct estimate. 
However, depending on the initial estimate, the filters have different convergence rates, and the good estimates get 
diluted with the poor estimates. Perhaps for a standard EKF which is prone to divergence under poor initialization the 
range-parameterized algorithm will improve performance. 



 
Figure 6: HC-EKF vs. PLLS with 3-DOF 

model and jammer at (-1, 0, 0) km 

3.4 Particle Filter (PF) 

The Bayesian framework for filtering problems represents a 
theoretically sound approach which entails determining the PDF of an 
unknown parameter. The following formula, referred to as Bayes’ 
Rule, provides a means by which the prior PDF of some unknown 
random time-varying parameter )(kx  is updated using a likelihood 
function 
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where )}(),...,2(),1({ kY k yyy=  represents a sequence of 
measurements. The measurements are related to the unknown 
parameter through the following measurement equation  

 ))(),(()( kkk k vxhy =  (NLME) 

where ),( ⋅⋅kh  is a possibly time-varying nonlinear function of the unknown parameter )(kx , and )(kv is typically 
assumed to be a sample of a white noise measurement process whose PDF is known. The state is assumed to evolve 
according to the following general dynamic equation 

 ))(),(()1( kkk k wxfx =+  (NLSE) 

where ),( ⋅⋅kf  may be a time-varying nonlinear function of the state and )(kw  is typically modeled as a white noise 
process with a known PDF. The difficulty in analytically determining the PDF of )(kx is that only for special cases does 

a closed-form (i.e., finite) description of )|)(( kYkp x exist. When (NLME) and (NLSE) take on the special linear 
forms 
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where )(kw  and )(kv  are samples from a Gaussian white noise process, then the PDFs are all Gaussian and, thus, are 
completely characterized by the first and second moments (i.e., mean and covariance). For the linear case modeled as in 
(LE), the resulting Bayes’ implementation is the well-known Kalman Filter. However, for a plethora of other cases 
(e.g., nonlinear, non-Gaussian), the Kalman filter is inappropriate. While some success has been achieved by applying 
the EKF (Extended Kalman filter), derived by linearizing the measurement equation and/or dynamic equation, the 
behavior of the EKF is often unpredictable. The difficulty in applying the EKF lies in the underlying assumption that 
the PDF of the unknown parameter (i.e., target state) can be sufficiently approximated by a Gaussian density function, a 
dubious assumption, particularly for the case of multimodal PDFs.  

When linearization of the measurement model and/or dynamic model is not feasible or leads to unsatisfactory results, 
another approach to the implementation of Bayes’ methods is the approximation of the true PDF of )(kx  using a model 
density. Various approximations include a piece-wise constant approximation, point-mass approximation or Gaussian 
sum approximation of the true posterior PDF of the target state. These “deterministic” methods all involve 
approximating the PDF of the state on a fixed grid over the state space and, therefore, suffer from the “curse of 
dimensionality.” To cope with the computational complexity of these fixed-grid approaches, sub-optimal pruning of 
basis functions (i.e., points in the grid) is usually required. In contrast, the method described next naturally implements a 
randomly evolving grid based on the likelihoods of the received data. 

Stochastic sampling methods randomly sample points in the state space and calculate the PDF at these points. Referred 
to generally as Monte Carlo methods, the computation required for their implementation in real-time systems precluded 



 
Figure 9: HC-EKF performance for 3-DOF 

and 6-DOF dynamic models  

 
Figure 8: HC-EKF localization error with 

6-DOF model and moving jammer  

 
Figure 7: HC-EKF vs. PLLS with 3-DOF 

model and jammer at (-2, 0, 0) km 

them from use except in statistical batch processing type applications. 
With the revolution in computing power over the last decade and 
advent of parallel computing structures (particle filtering methods are 
easily parallelizable), Monte Carlo methods have experienced a 
resurgence in the field of estimation and filtering [14].  Particle filters 
(also referred to as weighted bootstrap filters) are based on the solution 
to the following problem, “Given samples from a PDF )(xg , can one 
generate samples of an arbitrary PDF, )(xf ?” There are different 
methods by which this can be achieved, one of which is the weighted 
bootstrap method on which particle methods are based. For illustrative 
purposes we demonstrate the implementation of (BU), which is the 
“update” step in the Bayes’ approach to filtering. Given that we have 
samples )(kix , ,,...,2,1 ni =  which were drawn from the predicted 

density, )|)(( 1−kYkp x , the following procedure is used to simulate a 

set of samples drawn from )|)(( kYkp x . First, after receiving a 
measurement, )(ky , the weights  
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are calculated using the likelihood function evaluated at )(ky . Next, a 
discrete distribution is formed over the samples )(kix with iq  as the 
weights. Finally, this discrete distribution is resampled n times yielding 
a set of points which simulate samples drawn from the density, 

)|)(( kYkp x . The requirements for implementing the weighted 
bootstrap filtering algorithm are that a prior distribution on the 
unknown random parameter is available for sampling, the likelihoods 
are available and the PDF of )(kw in (LE) is available for sampling. 
Note the absence of reliance on linearity or Gaussian noise statistics.  
In fact, a closed-form expression for the likelihood function is not even 
necessary. It is sufficient that the likelihood be evaluated pointwise for 
any point in the state space. Thus, particle filtering methods are applicable to a much wider range of estimation 
problems than traditional linear Kalman Filters. Furthermore, there exists a justification [14] of the convergence of 
particle approximations to the true PDFs, results which are lacking for ad-hoc methods such as the EKF. 

4. SIMULATION RESULTS 
All four algorithms, the PLLS algorithm, the HC-EKF, the MH-HC-
EKF, and the PF, were individually optimized for the simulation 
assumptions including measurement and process noise values. Each 
algorithm was run for varying flight times and conditions and with both 
3-DOF and 6-DOF dynamic models. The scenario with the 3-DOF 
munition model was set up such that the munition lost GPS lock at (0, -
8, 7.62) km while traveling due north at Mach 0.8. The unaided flight 
time is approximately 40 seconds. The 6-DOF scenario was set up such 
that the munition lost GPS lock at (0, -15, 7.62) km while flying due 
north at Mach 0.8. The unaided flight time was approximately 73 
seconds. We found all four algorithms to be stable but we did verify the 
bias properties the PLLS filter. Essentially, the PLLS localization error 
was highly dependent on the system noise, the distance to the jammer, 



Figure 12: Typical impact errors after 
homing on the jammer  

 
Figure 11: HC-EKF vs. PF filter 

performance  

 
Figure 10: MH-HC-EKF for various 

numbers of parallel filters 

and the geometry. The performance of the PLLS algorithm was also 
degraded when the jammer was moving with a constant velocity. We 
now present results that are representative of the performance of each 
algorithm. 

Figure 6 shows the localization performance of the PLLS algorithm 
and the HC-EKF when the 3-DOF munition model is used and the 
stationary jammer is at (-1, 0, 0) km. We note that localization error in 
meters CEP for the HC-EKF was less than the error for the PLLS 
algorithm for the duration of the flight and is significantly lower at the 
end of the flight (< 100 m CEP vs.> 250 m CEP). The difference in the 
performance of the two algorithms was significantly more pronounced 
when the jammer was moved further away from the origin (the final 
destination of the munition.) Figure 7 demonstrates this fact for the 
same initial conditions as the previous figure except that the jammer is 
now at (-2, 0, 0) km. The final localization error for the HC-EKF is 
~100 m CEP while the localization error for the PLLS algorithm is greater than 400 m CEP.  

Figure 8 shows the response of the HC-EKF when the jammer is moving with a constant velocity of ( )0,2,2 vv  
where v = 5, 10, 15, and 20 m/s. In this case the 6-DOF munition is 
utilized. The figure demonstrates that the final localization error for the 
HC-EKF is less than 100 m CEP for all cases. Although we have not 
included supporting data, the localization error for the HC-EKF also 
did not appear to depend on the range to the jammer, i.e., the HC-EKF 
appears to be unbiased with respect to range. Figure 9 demonstrates 
that the filter performance did not significantly depend on the munition 
model employed. It shows the HC-EKF response for a stationary 
jammer located at ( -r, 0, 0) for r = 1, 2, and 4 km. In this case the 3-
DOF munition had the same initial conditions as the 6-DOF model 
with a 73 second unaided flight time. 

Figures 10 and 11 compare the performance of the HC-EKF to that of 
the MH-EC-EKF and the PF. In both cases the 3-DOF munition model 
is employed. In Figure 10 we varied the number of initial hypothesis 
considered for the range-parameterized (multiple-hypothesis) HC-EKF. 
The figure shows the response of the algorithm for H = 1, 6, 11, 16, 21, 
and 26 where H is the number of parallel filters considered. It appears that a single HC-EKF (H = 1) is sufficient for 
good performance. Figure 11 compares the performance of the HC-EKF with that of the PF. The figure demonstrates 
that while the final localization error of the PF is comparable under 
various different geometries to that of the HC-EKF (~ 100 m CEP), the 
HC-EKF is able to maintain a significantly lower localization error for 
a much greater portion of the trajectory. 

Finally, Figure 12, shows typical impact errors for the case when the 
munition pursued the jammer instead of the intended target at the 
origin. While the impact errors of Figure 12 were less than 1.7 m CEP, 
we found that the impact errors for various stationary jammer 
geometries and various unaided flight time durations were all within 
2.5 m CEP for both the 3-DOF and 6-DOF munition models. The 
guidance laws for both the 3-DOF and 6-DOF munition models were 
based on classical proportional guidance. A commanded impact angle 
of 71° was always achieved. Only the PLLS and HC-EKF algorithms 
were utilized for home-on-jam scenarios. Both algorithms performed 



similarly for stationary jammers while the HC-EKF performed significantly better for moving jammers. 

5. CONCLUSIONS 
We tested several bearings-only localization algorithms for the purpose of locating GPS jammers from a munition that 
has lost GPS lock. We found that the HC-EKF performed very well under all scenarios that we considered. While the 
PLLS filter was stable, it was found to be biased as a function of range, geometry and noise level. The multiple-
hypothesis EKF in hybrid-coordinates did not seem to provide any advantages over the single HC-EKF. While the PF 
errors all did converge to approximately the same values as the HC-EKF, the performance of the HC-EKF algorithms 
was preferable over the entire munition trajectory and because it is computationally less demanding than the PF. 
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